CS2335
Master_v2
Master_v2
  • Introduction
  • Introduction
    • Introduction
      • Design
      • Game Design
    • Unity - Download
    • Visual Studio - IDE
    • Hero's Journey
  • Unity Basics
    • Unity Editor Windows
    • MonoBehavior - Base-Class
    • Unity Engine - Event Functions
  • Getting Started
    • UI-Elements
    • Animator Controller
      • Animation Steps
    • PlayerController Flow Chart
    • PlayerController Code
      • PlayerController - V1 - S20
      • PlayerController V2 S20
      • PlayerController V3 S20
  • Project 1 - Simple Game
    • Overview
    • Project 1 - Get Started
      • UML Class Diagram
    • Player GameObject
      • PlayerController.cs V2
      • PlayerController.cs V3
    • Create 2D Sprite Prefab: Rock
    • Sorting Layers
  • Project1 Code
    • PickUp PreFabs
    • Player GameObject
    • PlayerController - jump
    • GameData Version1
    • PlayerStats Version1
    • MiniGameManager
      • Logic Diagram
    • Simple Spawner
    • Utility Class
  • Project1 Enhancements
    • PickUp - SelfDestruct
    • Spawn from List of Prefabs
  • Project 2 - StateManager
    • Project 2 - Learning Objectives
    • Project 2 - Starter Assets
    • Project 2
      • State Machine Framework
        • Singleton Pattern
      • StateManager - Singleton Design Pattern
      • IStateBase, BeginState
      • Project 2 -Steps: Create new Scene and State
      • Project 2 - List of Steps
        • Project 2 - Starter Code
  • Project 2 -Dialog
    • Hide_Show_Panel Script
    • Configure TitlePanel, DecisionPanel
    • Simple Dialog Prefab
    • Conversation Scriptable Objects
    • DialogManager_ConvList
    • Image Transitions for Buttons
  • UI Components
    • Finding Game Objects
    • Game Objects: UI vs. 2D Sprite
    • UI Elements
      • Canvas: Screen-Space Render-Mode
      • UI-Buttons To Change Scene
      • Text Input
  • Project2 Resources
    • Visual Novel in Unity-Links
    • Scriptable Object Factory
      • ScriptableObjects
    • Dialog Prefab Packages
  • Project 3 - Overview
    • Branching Story Structures
    • Dictionary Data-Structure
      • Unity PlayerPrefs Dictionary
    • Dictionary: User-Choice Data
      • User-Choices - Example
        • Dictionary Value to Disable Options
    • Simplified Mini-Game
      • PlayerController_v2 Mods
        • PlayerController_v2_final
      • MiniGameManager_v2
  • Proj3: Inventory System
    • Inventory-System
      • Install and Configure
      • Diagrams, Resources
        • Item, Gem, Potion Classes
        • Inventory Class
      • InventoryDisplay, Slot UI
        • InventoryDisplay Class
        • Slot Class
        • Hazard Class
        • Layout Groups
      • Customization Steps
        • Configure Animation
        • AddItem Button
        • Concrete Class: Food
        • MiniGame Mods
          • PlayerController Mods
      • Code: InventorySystem
        • GameData, PickUp Mods
      • Resources: Data Structures
  • Proj3: Custom UnityEvents
    • Event Publishing Patterns
    • Custom Event Messaging
  • Proj3: Mini-Game
    • MiniGame-Overview-Proj3
    • LevelManager
      • LevelManager Logic Diagram
      • LevelManager FSM
      • LoadLevel, StartLevel Logic
      • Code Framework
    • Timer
  • Project 3 - Code Mods
    • Project 3 - Steps
    • Project 3 - Code
      • Code: Final Versions
        • PlayerController Mods
          • PlayerController_v2 Mods
        • GameData - Final
        • LevelManager
        • PlayerStats - Final
        • PickUp, Hazard, ScorePickUp
        • Spawner - Final
        • CameraFollow
        • ScreenFader
        • MiniGameState
        • Example: EndState
      • MiniGameWin Logic
  • Optional, Supplemental Content
    • Optional Content
      • Adding Audio
      • Screen Fading and Reloading
      • ScriptableObjects
      • Disable Debug Logging
      • Events and Actions
      • Saving Data - Serialization
      • Parallax Scrolling
      • Change Sprites
  • C# Language
    • C# Language
      • Variables
      • Enum
      • Encapsulation
        • C# Properties
        • Access Modifiers
      • Inheritance
      • Polymorphism
      • Interface
      • Switch-Case
      • List< T >
      • Queue< T >
      • Dictionary
      • Foreach
      • Static
      • Ternary Operator: ?
      • this
      • Delegates
    • Diagrams
      • State Machine Framework
      • UML Class Diagrams
      • Level Manager Logic Diagram
      • Flow-Chart: NumberGame
      • FSM: NumberGame
    • Glossary
    • References and Resources
    • Random Thoughts
Powered by GitBook
On this page

Was this helpful?

  1. C# Language
  2. C# Language

Interface

PreviousPolymorphismNextSwitch-Case

Last updated 5 years ago

Was this helpful?

C# Interfaces are a concept similar to a C# Class, in that provide a way to implement a set of behaviors across several different classes. With Classes, child classes inherit all methods that are implemented in the base-class. With an Interface, we are only provide the signature for a method in the interface, we don't provide the actual body / coded functionality of the method.

An interface defines a contract: any class that implements an interface, MUST provide implementation for all methods and properties specified in the interface, with in the class definition. So, in the class that implements the interface, we'll find the actual code for the method's functionality. When writing an interface, it's assumed that several different classes will implement the interface, with the goal that we can insure that a behavior is implemented across all classes that implement the interface.

An example is that we could have several different types of objects that we'd allow the player to collect. If we defined an ICollectable interface, and then specified a method: Collect( ). Any class that included (implemented) the interface, would be guaranteed to have Collect( ) implemented, but each could have a different behavior, based on the code included in the body of the method as it's implemented in each class that implements the interface.

An interface contains definitions for a group of related functionalities that a class... can implement.

By using interfaces, you can, for example, include behavior from multiple sources in a class. That capability is important in C# because the language doesn't support multiple inheritance of classes.

You define an interface by using the interface keyword, as the following example shows.

interface IEquatable<T>
{
    bool Equals(T obj);
}

Interfaces in Unity

Interfaces provide a way implement similar behaviors across several classes. Since most scripts we write will have MonoDevelop as the

MSDN Programming Guide
Unity video on Interfaces
Unity video on Interfaces