CS2335
Master_v2
Master_v2
  • Introduction
  • Introduction
    • Introduction
      • Design
      • Game Design
    • Unity - Download
    • Visual Studio - IDE
    • Hero's Journey
  • Unity Basics
    • Unity Editor Windows
    • MonoBehavior - Base-Class
    • Unity Engine - Event Functions
  • Getting Started
    • UI-Elements
    • Animator Controller
      • Animation Steps
    • PlayerController Flow Chart
    • PlayerController Code
      • PlayerController - V1 - S20
      • PlayerController V2 S20
      • PlayerController V3 S20
  • Project 1 - Simple Game
    • Overview
    • Project 1 - Get Started
      • UML Class Diagram
    • Player GameObject
      • PlayerController.cs V2
      • PlayerController.cs V3
    • Create 2D Sprite Prefab: Rock
    • Sorting Layers
  • Project1 Code
    • PickUp PreFabs
    • Player GameObject
    • PlayerController - jump
    • GameData Version1
    • PlayerStats Version1
    • MiniGameManager
      • Logic Diagram
    • Simple Spawner
    • Utility Class
  • Project1 Enhancements
    • PickUp - SelfDestruct
    • Spawn from List of Prefabs
  • Project 2 - StateManager
    • Project 2 - Learning Objectives
    • Project 2 - Starter Assets
    • Project 2
      • State Machine Framework
        • Singleton Pattern
      • StateManager - Singleton Design Pattern
      • IStateBase, BeginState
      • Project 2 -Steps: Create new Scene and State
      • Project 2 - List of Steps
        • Project 2 - Starter Code
  • Project 2 -Dialog
    • Hide_Show_Panel Script
    • Configure TitlePanel, DecisionPanel
    • Simple Dialog Prefab
    • Conversation Scriptable Objects
    • DialogManager_ConvList
    • Image Transitions for Buttons
  • UI Components
    • Finding Game Objects
    • Game Objects: UI vs. 2D Sprite
    • UI Elements
      • Canvas: Screen-Space Render-Mode
      • UI-Buttons To Change Scene
      • Text Input
  • Project2 Resources
    • Visual Novel in Unity-Links
    • Scriptable Object Factory
      • ScriptableObjects
    • Dialog Prefab Packages
  • Project 3 - Overview
    • Branching Story Structures
    • Dictionary Data-Structure
      • Unity PlayerPrefs Dictionary
    • Dictionary: User-Choice Data
      • User-Choices - Example
        • Dictionary Value to Disable Options
    • Simplified Mini-Game
      • PlayerController_v2 Mods
        • PlayerController_v2_final
      • MiniGameManager_v2
  • Proj3: Inventory System
    • Inventory-System
      • Install and Configure
      • Diagrams, Resources
        • Item, Gem, Potion Classes
        • Inventory Class
      • InventoryDisplay, Slot UI
        • InventoryDisplay Class
        • Slot Class
        • Hazard Class
        • Layout Groups
      • Customization Steps
        • Configure Animation
        • AddItem Button
        • Concrete Class: Food
        • MiniGame Mods
          • PlayerController Mods
      • Code: InventorySystem
        • GameData, PickUp Mods
      • Resources: Data Structures
  • Proj3: Custom UnityEvents
    • Event Publishing Patterns
    • Custom Event Messaging
  • Proj3: Mini-Game
    • MiniGame-Overview-Proj3
    • LevelManager
      • LevelManager Logic Diagram
      • LevelManager FSM
      • LoadLevel, StartLevel Logic
      • Code Framework
    • Timer
  • Project 3 - Code Mods
    • Project 3 - Steps
    • Project 3 - Code
      • Code: Final Versions
        • PlayerController Mods
          • PlayerController_v2 Mods
        • GameData - Final
        • LevelManager
        • PlayerStats - Final
        • PickUp, Hazard, ScorePickUp
        • Spawner - Final
        • CameraFollow
        • ScreenFader
        • MiniGameState
        • Example: EndState
      • MiniGameWin Logic
  • Optional, Supplemental Content
    • Optional Content
      • Adding Audio
      • Screen Fading and Reloading
      • ScriptableObjects
      • Disable Debug Logging
      • Events and Actions
      • Saving Data - Serialization
      • Parallax Scrolling
      • Change Sprites
  • C# Language
    • C# Language
      • Variables
      • Enum
      • Encapsulation
        • C# Properties
        • Access Modifiers
      • Inheritance
      • Polymorphism
      • Interface
      • Switch-Case
      • List< T >
      • Queue< T >
      • Dictionary
      • Foreach
      • Static
      • Ternary Operator: ?
      • this
      • Delegates
    • Diagrams
      • State Machine Framework
      • UML Class Diagrams
      • Level Manager Logic Diagram
      • Flow-Chart: NumberGame
      • FSM: NumberGame
    • Glossary
    • References and Resources
    • Random Thoughts
Powered by GitBook
On this page
  • State Machine is a System Model
  • UML Class Diagrams: State-Manager System

Was this helpful?

  1. C# Language
  2. Diagrams

State Machine Framework

PreviousDiagramsNextUML Class Diagrams

Last updated 5 years ago

Was this helpful?

State Machines provide a framework to manage the logic of an event-driven dynamic system. Many aspects of game-design/development can be modeled and implemented by state-machines. For visual novels, we can consider each Scene as a game-state, where player decisions are the events that allow change between scenes. State Machines provide a simplified perspective of a complex system, which simplifies the logic required to implement dynamic game logic.

State Machine is a System Model

A State Machine models a complex system which is simplified according to these rules:

  • There exists a finite set of well-defined states that the system can be in.

  • There exists a finite set of discrete events which can cause the system to transition into a different state

  • There is a well-defined set of State-Event relationships that specify valid transitions for the system.

  • Events can be considered as enternal signals that impact the system.

  • It is necessary to specify the starting state of the system

  • It is necessary to have program memory which maintains track of the current system state.

    We implement the StateManager class to manage the State Machine structure.

    State-Machines structure:

  • a finite set of states,

  • a well-defined set of events that correspond to transitions between states

  • tracking the currently active state

    State: A State can represent a wide range of things: a scene, an animation clip, a behavior of an NPC.

Event: Events can be due to a variety of causes such as user input or due to gameObjects interacting with each other.

State-Event Transitions: A logical structure specifies which events cause valid transitions for each CurrentState-Event-NextState transition relationship.

UML Class Diagrams: State-Manager System

State-Machine Framework